SARDAR VALLABHBHAI NATIONAL INSTITUTE OF TECHNOLOGY

DEPARTMENT OF CHEMICAL ENGINEERING

M. TECH. IN CHEMICAL ENGINEERING 2024-25

SARDAR VALLABHBHAI NATIONAL INSTITUTE OF TECHNOLOGY ICHHANATH, SURAT – 395007, GUJARAT.

VISION & MISSION

INSTITUTE VISION

To be one of the leading Technical Institutes disseminating globally acceptable education, effective industrial training and relevant research output.

DEPARTMENT VISION

DEPARTMENT MISSION

In-line with the vision of the institute, to be a well reputed department with global acceptance and to produce highly skilled and knowledgeable chemical engineering graduates, post graduates and doctorates capable of delivering the best output to the society.

INSTITUTE MISSION

To be a globally accepted centre of excellence in technical education catalyzing absorption, innovation, diffusion and transfer of high technologies resulting in enhanced quality for all the stake holders.

To be one of the top engineering departments with excellent research work in the fields related to Chemical Engineering and offering technical knowhow to the stake holders.

PROGRAM EDUCATIONAL OBJECTIVES (PEOs)

PEO 1: Have successful career in the diversified areas of chemical engineering (Research & Development, Academic and Industry) by acquiring knowledge in various advances of chemical engineering at global Level.

PEO 2: Analyze and design contemporary chemical engineering issues with socio-economic and environmental awareness and responsibility.

PEO 3: Exhibit professional approach, communication skills, team work in their profession and adapt to modern trends by engaging in lifelong learning.

PROGRAM OUTCOMES (POs)

PO 1: An ability to independently carry out research / investigation and development work to solve practical problems.

PO 2: An ability to write and present a substantial technical report / document.

PO 3: Students should be able to demonstrate a degree of mastery over the area as per the specialization of the program. The mastery should be at a level higher than the requirements in the appropriate bachelor program.

PROGRAM SPECIFIC OUTCOMES (PSOs)

PSO 1: Recognize global challenges for solving engineering prolems related to chemical and allied fields through design and development of chemical processes.

PSO 2: Propose, investigate and evaluate sustainable solutions for chemical processes/products with socio-economical and environmental awareness alongwith professional ethics.

Teaching Scheme M.Tech. in <u>Chemical Engineering</u>

Sr.	Subject	Code	Scheme	Exam Scheme			Credits	Notional
No.			L-T-P	Th.	Т	Р	(Min.)	hours of
				Marks	Marks	Marks		(Approx.)
	First Semester							
1	Optimization Techniques (Core - 1)	CHCH101	3-1-0	100	25	-	4	70
2	Advanced Chemical Engineering Thermodynamics (Core – 2)	CHCH103	3-1-0	100	25	-	4	70
3	Advanced Transport Phenomena (Core – 3)	CHCH105	3-1-0	100	25	-	4	70
4	Elective-1	CHCH1AA	3-0-0	100	-	-	3	55
5	Elective-2	CHCH1BB	3-0-0	100	-	-	3	55
6	Chemical Engineering Lab-1	CHCH107	0-0-4	-	-	100	2	70
				Total			20	390
7	Vocational Training / Professional Experience (Optional) (Mandatory for Exit)	CHCHV91 CHCHP93	0-0-10				5	200 (20 x 10)
	Second Semester							
1	Advanced Chemical Reaction Engineering (Core - 4)	CHCH102	3-1-0	100	25	-	4	70
2	Advanced Separation Methods (Core - 5)	CHCH104	3-1-0	100	25	-	4	70
3	Elective-3	CHCH1CC	3-0-0	100	-	-	3	55
4	Elective-4	CHCH1DD	3-0-0	100	-	-	3	55
5	Institute Elective	CHCH1XX	3-0-0	100	-	-	3	55
6	Chemical Engineering Lab-2	CHCH106	0-0-4	-	-	100	2	70
7	Seminar	CHCH108	0-0-2	-	-	50	1	40
				Total			20	415
8	Vocational Training / Professional Experience (Optional) (Mandatory for Exit)	CHCHV92 CHCHP94	0-0-10				5	200 (20 x 10)
	Third Semester	Γ	1	1	I	T	I	
1	MOOC course – I*	#	#	#	#	#	3/4	70/80
2	MOOC course – II*	#	#	#	#	#	3/4	70/80
3	Dissertation Preliminaries	CHCH295	-	-	-	350\$	14	560
				Total			20-22	700-720
	Fourth Semester							
1	Dissertation	CHCH296	-	-	-	600 ^{\$}	20	800

^{\$} Internal: 40% and External: 60% *Swayam/NPTEL

List of Elective Courses

Sr. No.	Elective Courses	Code	Semester	Scheme
1	Nanotechnology	CHCH111	Ι	3-0-0
2	Smart Polymers	CHCH113	Ι	3-0-0
3	Nanomaterials Synthesis and Applications	CHCH115	Ι	3-0-0
4	Interfacial Science and Engineering	CHCH117	Ι	3-0-0
5	Polymer Engineering	CHCH119	Ι	3-0-0
6	Process Intensification	CHCH121	Ι	3-0-0
7	Multiphase Flow	CHCH123	Ι	3-0-0
8	Advanced Materials and Processes	CHCH125	Ι	3-0-0
9	Complex Fluids	CHCH112	II	3-0-0
10	Industrial Biotechnology	CHCH114	II	3-0-0
11	Environment, Health and Safety	CHCH116	II	3-0-0
12	Computational Fluid Dynamics	CHCH118	II	3-0-0
13	Design of Experiments	CHCH120	II	3-0-0
14	Advanced Process Control	CHCH122	II	3-0-0
15	Catalyst Science and Technology	CHCH124	II	3-0-0
16	Sustainable Development Goals	CHCH126	II	3-0-0
17	Corrosion and Electrochemical Engineering*	CHCH172	II	3-0-0
18	Non-Conventional Energy*	CHCH174	II	3-0-0
19	Environment Management System*	CHCH176	II	3-0-0

*Institute Elective

M. Tech. I (Chemical Engineering) – Semester - I	Scheme	L	Т	Р	Credit
OPTIMIZATION TECHNIQUES		3	1	0	04
(CHCH101)					

1.	Course Outcomes (COs):
	At the end of the course the students will be able to:
CO1	Relate the basic concept of optimization.
CO2	Formulate various process optimization problems.
CO3	Solve the chemical process optimization problems.
CO4	Relate the significance of numerical methods in linear and nonlinear programming.
CO5	Infer the application of optimization in chemical engineering.
CO6	Summarize the non-traditional optimization techniques and their applications.

2.	Syllabus	
	INTRODUCTION	4 Hours
	Scope and Hierarchy of Optimization, The essential Features of Optimization Problems	, Maximization
	and minimization problems- examples, Basic concepts of optimization - Convex and cor	acave functions,
	Necessary and sufficient conditions for stationary points, Degrees of freedom	
	MODELS FOR OPTIMIZATION	4 Hours
	Classifications of Models, How to build a Model fitting	
	FORMULATION	4 Hours
	Economic objective function, Formulation of various process optimization proble	ems and their
	classification.	
	UNCONSTRAINED AND CONSTRAINED SEARCH	9 Hours
	Optimizing a function of one-variable, Unconstrained multivariable optimization, direct set	arch methods,
	Indirect first order and second order methods, Constrained multivariable optimization - nec	essary and
	sufficient conditions for constrained optimum.	
	LINEAR PROGRAMMING AND APPLICATIONS	8 Hours
	Geometry of linear programs, Basic solution methods, Simplex algorithm and its application	ons. Sensitivity
	analysis	
	NON-LINEAR PROGRAMMING WITH CONSTRAINTS	6 Hours
	Quadratic programming, Generalized reduced gradients methods, Successive linear a	nd successive
	quadratic programming, Dynamic programming, Integer and mixed integer programming	
	APPLICATION OF OPTIMIZATION IN CHEMICAL ENGINEERING	6 Hours
	Optimization of staged and discrete processes, Optimal heat exchanger design, Optimal	pipe diameter,
	Optimal design of an Ammonia reactor	
	NON-TRADITIONAL OPTIMIZATION TECHNIQUES	4 Hours
	Genetic Algorithm and Simulated Annealing	
	Tutorial problems based on the topics covered during the theory classes	15 Hours
	Total Contact Time: 45 Hours + 15 Hours	s = 60 Hours

3.	Books Recommended
1	T. F. Edger, D. M. Himmelblau, "Optimization of Chemical Process", McGraw-Hill, New York, 2001.
	(Reprint).
2	S. S. Rao, "Engineering Optimization", New Age International, New Delhi, 2009.
3	K. Deb, "Optimization for Engineering Design: Algorithms and Examples," Prentice-Hall of India, Delhi,
	2012.
4	N. W. Loney, "Applied Mathematical Methods for Chemical Engineers", CRS Press, Boca
	Raton, FL, 2015.
5	M. C. Joshi, K. M. Moudgalya, "Optimization: Theory and Practice", Alpha Science International
	Limited, Oxford, UK, 2004.

M. Tech. I (Chemical Engineering) – Semester - I	Scheme	L	Т	Р	Credit
ADVANCED CHEMICAL ENGINEERING		3	1	0	04
THERMODYNAMICS					
(CHCH103)					

1.	Course Outcomes (COs):
	At the end of the course the students will be able to:
CO1	Describe intermolecular forces and relate to macroscopic thermodynamic properties.
CO2	Differentiate between ideal and non-ideal thermodynamic behaviour in both pure substances and
	mixtures.
CO3	Explain phase equilibria for multicomponent systems.
CO4	Estimate the thermodynamics properties of mixtures and solutions.
CO5	Evaluate and apply different methods/assumptions for performing phase equilibrium calculations,
CO6	Explain multi-reaction equilibria and solve problems.

2.	Syllabus	
	REVIEW OF CLASSICAL THERMODYNAMICS	3 Hours
	PROPERTIES OF PURE FLUIDS	4 Hours
	Thermo Properties from Volumetric Data, Equations of State, Generalized correlations.	
	INTERMOLECULAR INTERACTIONS AND CORRESPONDING STATE	5 Hours
	THEORY	
	Origin of interactions (Permanent, induced and instantaneous dipoles), Intermolecular force	es and potential
	energy functions, Corresponding states theory	
	THERMODYNAMIC PROPERTIES OF MIXTURES	15 Hours
	Mixtures, partial molar properties, Chemical potential, Gibbs Duhem equations, Property c	hanges on
	mixing, Fugacity in gas mixtures-Virial and Cubic EOS, corresponding states, fugae	cities in liquid
	mixtures, fugacities in liquid mixtures (electrolyte solution) Excess Functions in Li	quid Mixtures,
	Models for Excess Gibbs energy	
	PHASE EQUILIBRIA	10 Hours
	Multiphase Multicomponent phase equilibrium, VLE/SLE/LLE/VLLE, Solubility of gases	in liquids,
	solubility of solids in liquids.	
	CHEMICAL EQUILIBRIUM	6 Hours
	Combined phase and Reaction equilibrium	
	INTRODUCTION TO MOLECULAR SIMULATION	2 Hours
	Tutorial problems based on the topics covered during the theory classes	15 Hours
	Total Contact Time: 45 Hours + 15 Hours	= 60 Hours

3.	Books Recommended
1	J.M. Prausnitz, R.M. Lichtenthaler, E.G. Azevedo, "Molecular Thermodynamics of Fluid-Phase
	Equilibria", 3rd edition, Prentice Hall Inc., 1999.
2	J.M. Smith. H.C. Van Ness, M.M.Abott, "Introduction to Chemical Engineering Thermodynamics", 8th
	Edition, McGraw-Hill International edition, 2018.
3	S. I. Sandler, Chemical, Biochemical, and Engineering Thermodynamics, 5th Edition, John Wiley & Sons,
	Inc., 2017.
4	B. E. Poling, J. M. Prausnitz, J. P. O'Connell, "The Properties of Gases and Liquids", 5th edition,
	McGraw-Hill, 2001.
5	J.W. Tester and M. Modell, "Thermodynamics and Its Applications", 3rd Edition, Prentice Hall, 1997.

M. Tech. I (Chemical Engineering) – Semester - I	Scheme	L	Т	Р	Credit
ADVANCED TRANSPORT PHENOMENA		3	1	0	04
(CHCH105)					

1.	Course Outcomes (COs):
	At the end of the course the students will be able to:
CO1	Understand the chemical and physical transport processes and their mechanism
CO2	Perform heat, mass and momentum transfer analysis
CO3	Analyze industrial problems along with appropriate approximations and boundary conditions
CO4	Develop steady and time dependent solutions along with their limitations
CO5	Analyze various transport processes with understanding of solution approximation methods and their
	limitations.
CO6	Solve mass balance for steady and unsteady-state problems.

2.	Syllabus	
	INTRODUCTION	1 Hour
	TRANSPORT BY MOLECULAR MOTION	12 Hours
	Momentum transport by viscosity and momentum-flux. Energy transport by thermal co	onductivity and
	heat-flux. Mass transport by diffusivity and mass-flux.	-
	TRANSPORT IN ONE DIMENSION (SHELL BALANCE METHODS)	17 Hours
	Shell momentum balances and velocity distributions. Shell energy balances and	d temperature
	distributions. Shell mass balances and concentration distributions.	
	USE OF GENERAL TRANSPORT EQUATIONS	5 Hours
	Equations of change and their use in momentum transport (isothermal). Equations of change	ge and their use
	in energy transport (non-isothermal). Equations of change and their use in mass transport (non-isothermal).	mixtures).
	TRANSPORT WITH TWO INDEPENDENT VARIABLES	2 Hours
	VELOCITY DISTRIBUTION IN TURBULENT FLOW	2 Hours
	INTERPHASE TRANSPORT IN ISOTHERMAL SYSTEMS	4 Hours
	Friction factors for flow in tubes, flow around spheres, and packed columns.	
	MACROSCOPIC BALANCES FOR ISOTHERMAL FLOW SYSTEMS	2 Hours
	Macroscopic mass balance for steady and unsteady-state problems.	
	Tutorial problems based on the topics covered during the theory classes	15 Hours
	Total Contact Time: 45 Hours + 15 Hours	s = 60 Hours

3.	Books Recommended
1	R.B. Bird, W. E. Stewart, E. N. Lightfoot, "Transport Phenomena", 2nd Edition, John Wiley & Sons,
	Singapore, 2002.
2	W. J. Thomson, "Introduction to Transport Phenomena", Pearson Education Asia, Singapore, 2000.
3	R. S. Brodkey, H.C. Hershey, "Transport Phenomena: A Unified Approach", McGraw-Hill, 1989.
4	J. L. Plawsky, "Transport Phenomena Fundamentals", Marcel Dekker, New York, 2001.
5	J. C. Slattery, L. Sagis, Oh E-S., "Interfacial Transport Phenomena", 2nd Edition, Springer, 2007.

M. Tech. I (Chemical Engineering) – Semester - II	Scheme	L	Т	Р	Credit
ADVANCED CHEMICAL REACTION		3	1	0	04
ENGINEERING					
(CHCH102)					

1.	Course Outcomes (COs):
	At the end of the course the students will be able to:
CO1	Analyse the non ideal behaviour of reactors by tracer experiments and suitable models.
CO2	Understand heterogeneous catalysed reactions.
CO3	Design reactors for catalytic reactions.
CO4	Discuss about the applications of supported catalysts.
CO5	Apply the knowledge gained for the environmental impact.
CO6	Distinguish between laboratory and structured reactors.

2.	Syllabus	
	NON-IDEAL REACTORS AND RTD STUDIES	6 Hours
	Non ideal flow in reactors, RTD of fluid in reactors, E and F curves, Washout and Intensity	Functions,
	Effects of RTD on performance of Chemical Process Equipment, Two-parameter models for	or analysis of
	flow through reactors	
	KINETICS OF HETEROGENEOUSLY CATALYSED REACTIONS	7 Hours
	Adsorption kinetics, External and internal diffusional and thermal resistances, Diffusion di	sguised kinetic
	observations, Effects of heat generation/absorption, Non-isothermal effectiveness factors	s, LHHW and
	Eley-Rideal rate expressions, Method of initial rates	
	CATALYSIS	6 Hours
	Typical catalysts used in chemical processes, Catalyst characterizations, Design of catalyst	ts, Mechanistic
	aspects of catalysis	
	CATALYST DEACTIVATION AND REGENERATION PROTOCOL	3 Hours
	Modelling catalyst deactivation by coking, sintering, etc., Concept of conver	sion capacity,
	Circumventing catalyst deactivation during operation, Catalyst regeneration protocols	
	MULTIPHASE REACTORS	6 Hours
	Kinetic analyses of slurry- and trickle bed- reactors, Bubble column slurry reactors, Loop	slurry reactors,
	Hydrodynamics in reactors	-
	REACTOR DESIGN	5 Hours
	Fixed bed-, Fluid bed-, Trickle bed-, Slurry- reactors	
	ZEOLITE CATALYSIS	5 Hours
	Rise of Acidity, Modifications, Shape Selectivity, Inverse shape selectivity, Applications	in refining and
	petrochemicals processes	
	ENVIRONMENTAL CATALYSIS	2 Hours
	Importance, Applications	
	LABORATORY REACTORS	3 Hours
	Experiments for absence of Intra-particle and extra-particle transport gradients, Criter	eria for kinetic
	regime of experiments, Experimental measures of catalyst performance, Guidelines for o	catalyst testing,
	Types of laboratory reactors	
	STRUCTURED REACTORS	2 Hours
	Configurations, Preparation, Hydrodynamics and Applications, Accelerated Deactivation	on of catalysts,
	laboratory reactors, Oscillatory motion of reactants in catalyst pores, Microreactors, Sing	gle pellet string
	reactors.	
	Tutorial problems based on the topics covered during the theory classes	15 Hours
	Total Contact Time: 45 Hours + 15 Hours	= 60 Hours

3.	Books Recommended
1	H. S. Fogler, "Elements of Chemical Reaction Engineering", 4th Edition, Prentice Hall, NJ, 2006.
2	L. K. Doraiswamy, D. Uner, "Chemical Reaction Engineering Beyond the Fundamentals", CRC Press,
	New York, 2014.
3	J. M. Smith., "Chemical Engineering Kinetics", 3rd Edition, McGraw-Hill, N Y, 1981.
4	O Levenspiel, "Chemical Reaction Engineering", 3rd Edition, John Wiley & Sons, Singapore, 1998.

5	J. D. Wilde, G. F. Froment., K. B. Bischoff, "Chemical Reactor Analysis and Design", John Wiley &
	Sons, Newyork, 1979.

4.	Additional Reading
1	P.L. Silverston, "Composition Modulation of Catalytic Reactors", CRC Press, 1998.
2	Hand-outs from recent publications.
3	"Chemical Reaction Analysis and Design", John Wiley & Sons, New York 1919.

M. Tech. I (Chemical Engineering) – Semester - II	Scheme	L	Т	Р	Credit
ADVANCED SEPARATION METHODS		3	1	0	04
(CHCH104)					

1.	Course Outcomes (COs):
	At the end of the course the students will be able to:
CO1	Describe fundamental concepts of separation processes
CO2	Discuss the principles and process of crystallization
CO3	Identify various membrane-based separation processes and its applications
CO4	Summarize the properties of colloidal separation
CO5	Explain surfactant-based separation
CO6	Discuss supercritical fluid extraction

2.	Syllabus	
	MEMBRANE SEPARATION PROCESSES	26 Hours
	Reverse Osmosis, Nanofiltration, Ultrafiltration, Microfiltration, Dialysis, Electro	odialysis, Gas
	Permeation, Pervaporation, Liquid Membranes, Membrane Preparation Methods, Memb	rane Properties
	and Characterization, Membrane Transport Models, etc.	
	BASICS OF EMERGING MEMBRANE SEPARATION PROCESSES	7 Hours
	Membrane Distillation, Membrane Distillation-Crystallization, Membrane Bioreactor, For	rward Osmosis,
	Pressure Retarded Osmosis, Reverse Electrodialysis, Membrane Dryer, etc	
	OTHER SEPARATION METHODS	12 Hours
	Supercritical Fluid Extraction, Reactive Separations, Chromatography, Sublimation, Fo	am Separation,
	Ion Exchange, Zone Melting, etc.	_
	Tutorial problems based on the topics covered during the theory classes	15 Hours
	Total Contact Time: 45 Hours + 15 Hours	= 60 Hours

3.	Books Recommended
1	P. C. Wankat, "Rate-Controlled Separations", Elsevier Applied Science/Kluwer, New York, 1994.
2	R. W. Baker, "Membrane Technology and Applications", 4th Edition, John Wiley and Sons, Chichester
	(UK), 2023.
3	R. Singh, "Membrane Technology and Engineering for Water Purification", 2 nd Edition, Elsevier Inc.,
	Oxford (UK), 2015.
4	P. M. Bungay, H.K. Lonsdale & M.N. de Pinho (Eds.), "Synthetic Membranes: Science, Engineering and
	Applications", NATO ASI Series, Vol.181, D. Reidel Publishing Company, Dordrecht, Holland, 2011.
5	K. Nath, "Membrane Separation Processes", 2 nd Edition, PHI, New Delhi, 2016.

4.	Additional Reading
1	Recent literature from Journals on related topics.

M. Tech. I (Chemical Engineering) – Semester - I	Scheme	L	Т	Р	Credit
NANOTECHNOLOGY		3	0	0	03
(CHCH111)					
Elective					

1.	Course Outcomes (COs):
	At the end of the course the students will be able to:
CO1	Describe about the origin of Nanotechnology and its scope.
CO2	Explain the nanomaterials and their synthesis processes.
CO3	Explain about basics of characterization techniques of nanomaterials.
CO4	Estimate various types of applications and performance.
CO5	Analyse the potential of nanotechnology and new opportunity for future.
CO6	Explain the risk associated with nanoparticles and their remediation.

2.	Syllabus	
	INTRODUCTION TO NANOTECHNOLOGY	5 Hours
	Global issues, what is nanotechnology, its overview and need, History, nano-scal	e, its need or
	significance, scope utilization, applications, importance, properties at nanoscale, application	ons, Theoretical
	concepts from Classical Physics and Quantum Mechanics, hazards associated at nanoscale	, etc.
	NANOMATERIALS	6 Hours
	Nanoparticles, carbon nanotubes, nanowires, nanofilms, nanostructured bulk mater	rials, magnetic
	nanoparticles, biological nanoparticles, Applications, etc. Zero-D, One-D, Two-D, Thrmaterials	ee-Dimensional
	SYNTHESIS OF NANOMATERIALS	8 Hours
	Top-down and bottom approach for nano-material synthesis, Sol-Gel process, Microway	ve heating, Gas
	phase condensation, Sputtering Techniques, High energy attrition milling, electro depo	sitions, plasma
	enhanced vapour deposition, physical and chemical vapor deposition, benefits and limitation	ons of each and
	applications, nanomaterials fabrications by modeling and simulations.	
	CHARACTERIZATION TECHNIQUES	10 Hours
	Atomic Force Microscope (AFM), Scanning electron microbiology (SEM), Transm	ission electron
	microscopy (TEM), Scanning Tunneling microscopy (STM), Scanning Probe micro	oscopy (SPM),
	Thermogravimetric analysis (TGA), X-ray diffraction technique (XRD), Particle Size: Nan	o particle sizer,
	Plasma emission spectrophotometer. Film thickness: Nano film thickness	
	APPLICATION OF NANOTECHNOLOGY	10 Hours
	Environmental Engineering, wastewater treatment, nanocoatings, nanocomposites, nano	catalyst, paint
	industry, glass industry, textile industries, medical, drug delivery, energy sector, n	anomembranes,
	nanosensors, zerovalent iron nanoparticle, nanosized photo catalyst, nano-probs/sensors,	FISH, Waste to
	energy systems, Fuel cell systems, Energy storage devices.	<u> </u>
	RISK OF NANOTECHNOLOGY	6 Hours
	Toxic effects, phytotoxicity, limits and guidelines for air, water, soil and future threat, heal	th aspects, Life
	cycle assessment.	
	Total Contact T	Time: 45 Hours

3.	Books Recommended
1	T. Pradeep, "A text book of Nanoscience and Nanotechnology", 2017, 2 nd Edition.
2	C. Guozhong, "Nanostructure and nanomaterials, synthesis, properties and applications", 2 nd Edition,
	(Imperial College Press), 2019.
3	M. Wilson, "Nanotechnology, basic science and emerging Technology", Chapman & Hall/CRC, 1st
	Edition, 2002.
4	F.K. Harald, "Nanotechnology, Environmental Aspects", Vol. 2 Wiley 1st Edition, 2008.
5	K.K. Chattopadhyay, A.N. Banarjee, "Introduction to Nanoscience and nanotechnology", 1st Edition,
	2009.

M. Tech. I (Chemical Engineering) – Semester - I	Scheme	L	Т	Р	Credit
SMART POLYMERS		3	0	0	03
(CHCH113)					
Elective					

1.	Course Outcomes (COs):
	At the end of the course the students will be able to:
CO1	Summarize knowledge of basic concepts of polymer and its characterization
CO2	Identify various rheological properties for polymer
CO3	Evaluate polymer properties from different polymerization data
CO4	Understand various properties of smart polymers
CO5	Explain huge potential role of smart polymers in the future technology development
CO6	Describe degradation behavior of polymer and its impact on environment

2.	Syllabus	
	POLYMERIZATION	4 Hours
	Mechanism of different polymerization, Newer methods of synthesis of polymers, S	pecial purpose
	polymers	
	CHARACTERIZATION METHODS	3 Hours
	Polymer Characterization i.e., Gel Permeation chromatography (GPC), Concept of di molecular weight Fourier Transform Infrared Spectroscopy (FTIR), Thermal Analysis, X-Electrical Properties, Optical Properties.	fferent average ray Diffraction,
	RHEOLOGICAL PROPERTIES OF POLYMERS	3 Hours
	Simple shear flows, elongation flows. Polymer solutions. Relation between properties crystallinity and orientation. Crosslinking of polymers and elastomers,	and structure,
	NEWER METHODS FOR SYNTHESIS OF POLYMERS	7 hours
	Classification of nanocomposites & their comparison with normal composites & ble methods of preparation of polymer nanocomposite and blend	ends, Different
	SPECIAL PURPOSE POLYMER	8 Hours
	Polymers responding to various stimuli such as heat, light, pressure, fluids/chemicals e polymers classification/ requirements for conductivity, doping of polymers, light emit liquid crystal polymers their classification (LCPs).	etc. Conducting tting polymers,
	SMART POLYMERS	12 Hours
	Microgels, Protein-based smart polymers, pH-responsive and photo-responsive polymers, Shape-memory polymers (SMPs), Biodegradable polymers, self-cleaning polymer, Other polymers.	Self-assembly, r newer type of
	SMART HYDROGELS	5 Hours
	Synthesis, Fast responsive hydrogels, Molecular recognition, Smart hydrogels as actuat drug release, artificial muscles, Hydrogels in microfluidics	ors, Controlled
	BIO- POLYMER AND DEGRADATION	3 Hours
	Bio-polymer, Recycling of polymers & environment and Polymer coding, various late Polymer degradation and its impact on Environment.	est methods of
	Total Contact T	ime: 45 Hours

3.	Books Recommended
1	N. Yui, R. J. Mrsny, K. Park (Eds.), "Reflexive Polymers and Hydrogels: Understanding and Designing
	Fast Responsive Polymeric Systems", CRC Press, 2004.
2	G. B. Mattiasson (Eds.), "Smart Polymers: Applications in Biotechnology and Biomedicine", 2 nd edition,
	CRC Press, 2008.
3	V. R. Gowariker, N. V. Viswanathan, J. Sreedhar, "Polymer Science", Halsted Press.
4	B. R. Gupta, "Applied Rheology in Polymer Processing", Asian Books Private Limited, New Delhi, 2005.
5	M. M. Schwartz, "Composite Material Handbook", McGraw-Hill company, 1984.

4.	Additional Reading
1	Recent literature from Journals on smart polymer.

M. Tech. I (Chemical Engineering) – Semester - I	Scheme	L	Т	Р	Credit
NANOMATERIALS SYNTHESIS AND		3	0	0	03
APPLICATIONS					
(CHCH115)					
Elective					

1.	Course Outcomes (COs):
	At the end of the course the students will be able to:
CO1	Understand the importance of nanomaterials, and types of synthesis methods and their applications
CO2	Learn advantages of chemical synthesis methods of nanomaterials and aspects involved in chemical
	methods of nanomaterial synthesis
CO3	Learn aspects involved in Colloidal synthesis of various nanostructures and phase behavior
CO4	Learn features involved in Nano catalyst preparation methods and applications
CO5	Learn aspects involved in Nanomaterial synthesis and thin film preparation methods for energy sectors
	and aspects and controlling operating parameter involved
CO6	Optimization and finding the best optimum parameters using DOE

2.	Syllabus	
	OVERVIEW	2 Hours
	Importance of nanomaterials, and types of synthesis methods and their applications.	
	FUNDAMENTALS OF CHEMICAL SYNTHESIS AND ENHANCED PROPERTIES	3 Hours
	Advantages of chemical synthesis methods of nanomaterials and aspects involved in chem nanomaterials synthesis, Enhanced Properties at nanoscale.	ical methods of
	COLLOIDAL SYNTHESIS OF NANOMATERIALS	3 Hours
	Colloidal synthesis of various nanostructures. Microemulsion method for nanomate channels of zeolites, Phase behavior of synthesis systems such as colloidal systems.	erial synthesis,
	NANOCATALYSIS: NANOMATERIALS SYNTHESIS FOR NANO CATALYSIS	10 Hours
	Nano catalyst preparation methods and applications, Aspects involved in aqueou nanomaterials, co-precipitation, observation and measurement of size and structure at th XRD, AFM, TEM, etc. Nano catalyst preparation methods and applications	s methods of e nanoscale by
	ENERGY SECTORS: NANOMATERIALS SYNTHESIS	9 Hours
	Nanomaterial synthesis and thin film preparation for energy sectors, various types of thin methods, Coater and CVD, aspects and controlling operating parameter involved, a nanomaterials in Energy sectors such as various types of solar cell.	a film synthesis applications of
	OTHER APPLICATIONS OF NANOMATERIALS: NANOMATERIALS SYNTHESIS	9 Hours
	Applications of nanomaterials in various types of fuel cell, water splitting, energ Nanowires/nanorods/nanotubes synthesis.	y storage etc.
	OPTIMIZATION OF NANOMATERIALS FORMATION	8 Hours
	Optimization of operating parameters, finding the best optimum parameters, use of DOE.	
	SCALE-UP ISSUES IN NANOMATERIALS SYNTHESIS	1 Hour
	Issues related to scale-up in nanomaterials synthesis including downstream processing.	
	Total Contact T	ime: 45 Hours

3.	Books Recommended
1	G. L. Hornyak, H.F. Tibbals, J. Dutta, "Introduction to Nanoscience and Nanotechnology", CRC Press,
	Taylor and Francis, US, 2009.
2	N. Singh, "Encyclopedia of Nanoscience and Nanotechnology", Volume 10, American Scientific
	Publishers, USA, 2004.
3	C. Brechignac, P. Houdy, M. Lahmani, "Nanomaterials and Nanochemistry, Springer-Verlag
	Berlin Heidelberg, 2007.
4	G. A. Ozin, A.C. Arsenault, "Nanochemistry: A chemical approach to nanomaterials", Royal society of
	chemistry, UK, 2005.
5	J. Ross, "Taguchi Techniques for Quality Engineering", McGraw-Hill, 1996.

4.	Additional Reading
1	M. Ratner, D. Ratner, "Nanotechnology: A gentle introduction to the next big idea", Prentice-Hall, New
	Jersey, 2002.
2	K. K. Chatopadhyay, A. N. Banerjee, 2009, PHI Learning Pvt. Ltd., New Delhi, India.

M. Tech. I (Chemical Engineering) – Semester - I	Scheme	L	Т	Р	Credit
INTERFACIAL SCIENCE AND ENGINEERING		3	0	0	03
(CHCH117)					
Elective					

1.	Course Outcomes (COs):
	At the end of the course the students will be able to:
CO1	Explain about interfaces and methods to measure them
CO2	Summarize various types of colloidal dispersions and their stability
CO3	Describe about the surface forces
CO4	Discuss various transport processes at interface
CO5	Describe the criteria for stability of thin films between interfaces
CO6	Solve the problems of stability of thin films based on given conditions

2.	Syllabus	
	INTRODUCTION TO INTERFACIAL SCIENCE AND ENGINEERING	2 Hours
	Introduction of colloids and interfacial science, applications and scope of interfacial	al science and
	engineering.	
	INTERFACIAL TENSION	5 Hours
	Thermodynamic approach of interfacial tension, mechanical approach of interfacial tension	on, equilibrium
	shape of fluid interfaces, methods of measuring interfacial tension.	
	INTERFACES	7 Hours
	Energy and stress-based characterization, Young-Laplace and Kelvin equations for curved	interfaces, flux
	and momentum balances for interfaces, solid-fluid interfaces, free interfaces, interfa	ces in motion,
	rheology of interfaces.	
	COLLOIDAL DISPERSIONS	8 Hours
	Forces in colloidal systems, stability of emulsions and foam, DLVO theory, surfactants,	self-assembly,
	thermodynamics of monolayers, micelles, reverse micelles, vesicles, critical miceller	concentration,
	creaming, flocculation, coalescence, Ostwald ripening, zeta potential, electrophoresis, e	electro-osmosis,
	micro-emulsions.	
	PARTICLES AT INTERFACES	7 Hours
	Pickering emulsions, effects of particles at interfaces, pattern formation, contact angle hys	steresis, wetting
	and spreading, work of adhesion and cohesion.	
	TRANSPORT PHENOMENA AT INTERFACES	7 Hours
	Interfacial mass transfer, interfacial instability during mass transfer, transport theorem	orem for body
	containing intersection dividing surfaces, Marangoni flow, stability of moving interfaces	s with chemical
	reactions, dynamic interfaces.	
	BUBBLES, DROPS AND THIN FILMS	7 Hours
	Interactions of bubbles or drops in dispersed systems, interaction forces in interfacial syste	ems, stability of
	thin films	
	SELECTED TOPICS FROM CURRENT LITERATURE	2 Hours
	Total Contact T	ime: 45 Hours

3.	Books Recommended
1	J. C. Slattery, L. Sagis, and Oh ES., "Interfacial Transport Phenomena", 2 nd Edition, Springer, New
	York, 2016.
2	M. J. Rosen, J.T. Kunjappu, "Surfactants and Interfacial Phenomena", 4th Edition, John Wiley & Sons,
	New Jersey, 2012.
3	R. J. Stokes, D.F. Evans, "Fundamentals of Interfacial Engineering", 1st Edition, Wiley - VCH, New
	York, 1997.
4	C. A. Miller, P. Neogi, "Interfacial Phenomena: Equilibrium and Dynamic Effects", 2 nd Edition, CRC
	Press, N.Y., 2019.
5	J. N. Israelachvili, "Intermolecular and Surface Forces", 3 rd Edition, Academic Press, New York, 2015.

4.	Additional Reading
1	A.W. Adamson, A. Gast, "Physical Chemistry of Surfaces", 6th Edition, John Wiley and Sons, New
	Jersey, 2011.
2	D. A. Edwards, H. Brenner, D.T. Wasan, "Interfacial Transport Processes and Rheology", Butterworth
	Heinmen, Oxford, 2013.

M. Tech. I (Chemical Engineering) – Semester - I	Scheme	L	Т	Р	Credit
POLYMER ENGINEERING		3	0	0	03
(CHCH119)					
Elective					

1.	Course Outcomes (COs):
	At the end of the course the students will be able to:
CO1	Estimate the basic concept of monomer, polymer and polymer blend/composite.
CO2	Classify different polymerization reactions and their mechanisms/kinetics.
CO3	Analyze polymerization data and calculate the conversion and molecular weight.
CO4	Describe the thermal, mechanical and viscoelastic behavior of polymers with respect to their chemical
	structures and molecular weights.
CO5	Demonstrate an ability to predict polymer degradation.
CO6	Express the knowledge of smart polymer and its uses.

2.	Syllabus	
	INTRODUCTION	2 Hours
	Monomers, Polymers, Classification of polymers	
	POLYMER CHEMISTRY	11 Hours
	Polymerization methods: addition and condensation; their kinetics, Copolymerizat reactivity ratios and its significance, Kinetics, Different copolymers, random, alternat copolymerization, block and graft copolymers, Techniques for copolymerization- suspension, emulsion	ion, Monomer ing, azeotropic bulk, solution,
	POLYMER CHARACTERIZATION	10 Hours
	Concept of average molecular weight, determination of number average, weight average and Z-average molecular weights, Gel Permeation Chromatography (GP osmometry, Dilute solution viscosity method, Ultracentrifugation, Analysis of polymers u thermal (DSC, DMTA, TGA), microscopic (optical and electronic) techniques.	erage, viscosity C), Membrane using IR, XRD,
	POLYMER BLENDS AND COMPOSITES	4 Hours
	Difference between blends and composites, their significance, Choice of polymers for b reinforced plastic, long and short fibre reinforced composites, Nanocomposites	blending, Fiber-
	POLYMER TECHNOLOGY	3 Hours
	Polymer compounding, Need and significance of polymer compounding, Different Ingredients for polymer, Crosslinking and vulcanization, Smart polymer	compounding
	POLYMER PROCESSING	7 Hours
	Compression molding, transfer molding, injection molding, blow molding, reaction injecture extrusion, pultrusion, calendaring, rotational molding, thermoforming, rubber processing is internal mixer. Commodity and general-purpose thermoplastics and thermosetting polymer PVC, PF, MF, UF, Epoxy, Unsaturated polyester etc.	ection molding, n two-roll mill, ers: PE, PP, PS,
	SMART POLYMER	5 Hours
	Special purpose polymers, Stimuli response polymers, Self-healing polymer, Conduc Superabsorbent polymers	ctive polymers,
	POLYMER DEGRADATION	3 Hours
	Definition, Types of degradation, Nanoplastic, Recent trend polymer degradation.	
	Total Contact T	ime: 45 Hours

3.	Books Recommended
1	V. R. Gowariker, N.V. Viswanathan, J. Sreedhar, "Polymer Science" 1st Edition, Halsted Press, John
	Wiley & Sons, New York, 1986.
2	F. W. Billmeyer, "Text Book of Polymer Science, 3rd edition, John Wiley & Sons, New York, 1984.
3	P. Ghosh, "Polymer Science & Technology of Plastic, Rubber, Blends and Composites" 2 nd Edition, Tata
	McGraw-Hill, New delhi, 2008.
4	D. H. Morton-jones, Chapman and Hall, "Polymer Processing", 1st Edition, Springer, London, 1989.
5	N. G. McCrum, C.P. Buckley, C. B. Bucknall, "Principles of Polymer Engineering", 2 nd Edition, Oxford
	Science Publication, 1997.

M. Tech. I (Chemical Engineering) – Semester - I	Scheme	L	Т	Р	Credit
PROCESS INTENSIFICATION		3	0	0	03
(CHCH121)					
Elective					

1.	Course Outcomes (COs):
	At the end of the course the students will be able to:
CO1	Identify the scope for process intensification in chemical processes & operations.
CO2	Explain the concept of process intensification and the methodologies for PI.
CO3	Explain the operating principle of intensified technologies and its implementation.
CO4	Analyse the range of potential applications of intensified equipment.
CO5	Analyse the range of potential applications of intensified operation/process.
CO6	Appraise process challenges using intensification technologies and solve case studies.

2.	Syllabus	
	INTRODUCTION & PROCESS INTENSIFICATION TECHNIQUES	6 Hours
	Historical background & Philosophy, Principles and Domains of Process Intensification (PI), Benefits of
	Intensified Processes, PI Toolbox - Equipments and Methods, Active and Passive Techniq	ues.
	COMPACT HEAT EXCHANGERS	6 Hours
	Heat transfer intensification, Printed circuit heat exchangers, Foam heat exchange	ers, Micro-heat
	exchangers etc.	
	HIGH GRAVITY FIELDS	6 Hours
	Process fundamentals, Rotating packed bed, Design, Applications and Scale-up.	
	INTENSIFIED MIXING & REACTORS	10 Hours
	PI in stirred tanks, Spinning disc reactors, Structured reactors, Microchannel reactors.	
	REACTIVE SEPARATIONS	7 Hours
	Reactive distillation, Reactive absorption, Reactive extraction, Reactive membrane separat	ions
	ENHANCED FIELDS	5 Hours
	Energy based intensifications, Sonochemistry, Microwaves, Electrostatic fields.	
	CASE STUDIES-APPLICATION AREAS	5 Hours
	Methodology and Applications, Typical case studies from industrial sectors.	
	Total Contact T	ime: 45 Hours

3.	Books Recommended
1	D. Reay, C. Ramshaw, A. Harvey, "Process Intensification: Engineering for Efficiency, Sustainability and
	Flexibility", 2 nd Edition, Butterworth-Heinemann, 2013.
2	K. Boodhoo, A. Harvey, "Process Intensification Technologies for Green Chemistry", John Wiley &
	Sons, 2013.
3	A. Stankiewicz, J.A. Moulijn, "Re-Engineering the Chemical Processing Plant: Process Intensification",
	Marcel Dekker, 2004.
4	F. J. Keil, "Modeling of Process Intensification", WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim,
	2007.
5	Andrzej Stankiewicz, T. V. Gerven, Stefanidis, "The Fundamentals of Process Intensification", Wiley
	VCH 2019.

4.	Additional Reading
1	Articles from peer reviewed Journals.

M. Tech. I (Chemical Engineering) – Semester - I	Scheme	L	Т	Р	Credit
MULTIPHASE FLOW		3	0	0	03
(CHCH123)					
Elective					

1.	Course Outcomes (COs):
	At the end of the course the students will be able to:
CO1	Understand multiphase flow and its principles
CO2	Analysing the theoretical principles for potential applications of multiphase flow
CO3	Integrating interfacial transport phenomena in the multiphase flow systems
CO4	Illustrating the multiphase flow in process industries
CO5	Solving multiphase flow problems
CO6	Assessing the physical understandings of the multiphase flow through interdisciplinary studies

2.	Syllabus	
	INTRODUCTION TO MULTIPHASE FLOW	5 Hours
	Gas/liquid, liquid/liquid and liquid/solid particle flow systems. Multiphase flows in pipe	es, flow regime
	maps, pressure drop.	-
	GENERAL CONSERVATION LAWS	5 Hours
	Equation of motion for a small spherical particle, Stokes flow around a spherical particle,	interfacial flow
	and constitutive relations.	
	ONE DIMENSIONAL STEADY SEPARATED FLOW	5 Hours
	One dimensional steady separated flow model. Phases are considered together but	their velocities
	differ.Phases are considered separately, flow with phase change.	
	SOLID-LIQUID AND GAS-SOLID FLOW	5 Hours
	Hydrodynamics of solid-liquid and gas-solid flow. Particle Dynamics: Inertial effects, Two	o Fluid Models,
	Turbulence modulation by particles.	
	THREE PHASE FLOW	4 Hours
	Introduction to three phase flow	
	MEASUREMENT TECHNIQUES	6 Hours
	Measurement techniques for multiphase flow, Flow regime identification, pressure drop, ve	oid fraction and
	flow rate measurement.	
	FLOW IN MICROCHANNELS	7 Hours
	Flow in minichannels/microchannels, their principles and applications. Bubble dyn	amics, Droplet
	deformation and breakup, Droplet collisions and coalescence.	
	CASE STUDIES-APPLICATION AREAS	8 Hours
	Case studies of the multiphase flow. Modeling and simulations using CFD software's.	
	Total Contact T	ime: 45 Hours

3.	Books Recommended
1	G. Yadigaroglu, F. Hewitt Geoffrey, "Introduction to Multiphase Flow", Springer International
	Publishing, 2018.
2	C. E. Brennen, "Fundamentals of Multiphase Flow", Cambridge University Press, New York, 2005.
3	C. T. Crowe, "Multiphase Flow Handbook", Taylor & Francis, Boca Raton, Fl. 2006.
4	V. P. Carey, "Liquid-Vapor Phase-Change Phenomena", 2nd edition, Taylor & Francis, New York, 2008.
5	E. E. Michaelides , C. T. Crowe, J. D. Schwarzkopf, "Multiphase Flow Handbook", CRC Press, 2016.

4.	Additional Reading
1	D. M. Fries, "Multiphase Flow in Microchannels: Hydrodynamics and Implementation in Process
	Engineering", ETH, 2008.

M. Tech. I (Chemical Engineering) – Semester - I	Scheme	L	Т	Р	Credit
ADVANCED MATERIALS AND PROCESSES		3	0	0	03
(CHCH125)					
Elective					

1.	Course Outcomes (COs):
	At the end of the course the students will be able to:
CO1	Understand the importance of advanced materials, and types of synthesis methods and their applications,
	learn advantages, chemical synthesis methods of advanced materials and aspects involved in chemical
	methods of advanced materials synthesis
CO2	Learn features involved in advanced catalyst preparation methods and applications
CO3	Learn aspects involved in advanced materials synthesis and thin film preparation methods for energy
	sectors and aspects and controlling operating parameter involved
CO4	Analyse for best sequence with Heuristics and Apply practical knowledge for process simulation. Design
	Multi component Distillation, shortcut method of design
CO5	Evaluate Column Diameter and Apply Separation process selection thumb rules, and equipment selection
	thumb rules
CO6	Design of heat integration with pinch technology and heat exchanger network design.

2.	Syllabus	
	OVERVIEW	2 Hours
	Prominence of advanced materials, types of synthesis methods and their applications, Sup	erior Properties
	of advanced materials.	
	SYNTHESIS AND CHARACTRIZATION OF ADVANCED MATERIALS	8 Hours
	Colloidal synthesis of various advanced structures, channels of zeolites, Phase behavi	or of synthesis
	systems such as colloidal systems. Characterization and measurement of size and structu	re of advanced
	materials by XRD, SEM, UV-VIS, TEM, STM, AFM etc	
	APPLICATIONS OF ADVANCED MATERIALS IN CATALYSIS	3 Hours
	Advanced catalyst preparation methods and applications, Aspects involved in aqueo	us methods of
	advanced materials, co-precipitation	
	APPLICATIONS OF ADVANCED MATERIALS IN EMERGING ENERGY	9 Hours
	SECTORS	
	Advanced materials synthesis and thin film preparation for energy sectors, various typ	es of thin film
	synthesis methods, Coater and CVD, aspects and controlling operating parameter involve	ed, applications
	of advanced materials in Energy sectors such as various types of solar cell., applicatio	ns of advanced
	materials in various types of fuel cell, water splitting, energy storage etc.	
	ADVANCES PROCESS AND PROCESS EQUIPMENT	10 Hours
	Advances process, Multicomponent distillation column design, Methods including Heu	ristics for best
	sequence selection, Column Design for Distillation and Absorption, optimum des	ign, parameter
	optimization etc. Computer aided design of chemical process equipment's	
	SEPARATION METHOD SELECTION AND EQUIPMENT SELECTION	4 Hours
	Separation process selection criteria's and general thumb rules, equipment selection criteria	a's and general
	thumb rules	
	HEAT INTEGRATION AND HEAT EXCHANGER NETWORK DESIGN	9 Hours
	Heat integration, Pinch technology, and Optimum number of heat exchanger and its design	
	Total Contact T	ime: 45 Hours

3.	Books Recommended
1	Z. D. Jastrzebski, "Nature and Properties of Engineering Materials", 2 nd Edition, John Wiley & Sons,
	1976.
2	J. Douglas, "Conceptual Design of Chemical Processes", McGraw-Hill, New York, 1989.
3	W. F. Smith, J. Hashemi, R. Prakash, "Materials Science and Engineering", 4th Edition, McGraw - Hill,
	2010.
4	R. Smith, "Chemical Process Design", 2 nd Edition, McGraw-Hill, New York, 2016.
5	W.D.Sieder, J. D. Seader, D. R. Lewin, "Product and Process Design Principles", 4th Edition, John-Wiley,
	New York, 2016.

M. Tech. I (Chemical Engineering) – Semester - II	Scheme	L	Т	Р	Credit
COMPLEX FLUIDS		3	0	0	03
(CHCH112)					
Elective					

1.	Course Outcomes (COs):
	At the end of the course the students will be able to:
CO1	Classify types of different types of complex fluids.
CO2	Evaluate the rheological characteristics of the complex fluids.
CO3	Identify the rheological property responsible for the deformation characteristics.
CO4	Select appropriate test for evaluating rheological properties of complex fluids.
CO5	Apply the knowledge of rheology to test the rheology of complex fluids.
CO6	Apply the concepts to design new complex fluids with improved rheology.

2.	Syllabus	
	INTRODUCTION COMPLEX FLUIDS	3 Hours
	Types of fluids, features and applications of complex fluids, non-Newtonian behavior	avior, stresses,
	deformation and flow, Importance of study of rheology, rheological properties, mechanic	ical rheological
	techniques, use of rheological data for development of new products	
	DEFORMATION OF COMPLEX FLUIDS	8 Hours
	Deformation characteristics, Rheology, Viscoelasticity, Linear viscoelasticity. Non-linear	viscoelasticity:
	Rate - dependent and time-dependent shear and extensional viscosity, time-dependent	superposition,
	normal stresses in shear. Elementary theories of non-linear viscoelastic behavior	
	RHEOLOGICAL STUDIES OF COMPLEX FLUIDS	7 Hours
	Shear rheology, extensional rheology, compressional rheology and their applications	
	COMPUTATIONAL RHEOLOGY	6 Hours
	Micro-macro approach, methods of computational rheology,	
	POLYMERIC COMPLEX FLUIDS	6 Hours
	Structure of polymeric complex fluids, molecular origin of polymer melts, concent	trated solution,
	rheological behavior of polymer melts, non-linear viscoelasticity of entangled poly	ymers, flexible
	polymers, linear viscoelasticity of entangled polymers, polymer gels, transient network	k models, fine-
	grained theories of polymer dynamics, kinetic theory models for dilute polymer solutions	
	RHEOLOGY OF DISPERSIONS	6 Hours
	Flow properties of suspensions, emulsions, filled systems, gels, yield stresses of particular	alate gels, their
	measurements and applications	
	RHEOMETRY	3 Hours
	Testing methods, shear and extensional rheometry, Measurement of rheology in shearing	deformation
	and flows, techniques of measurement, features of various types of rheometers.	
	SELECTED TOPICS FROM CURRENT LITERATURE	6 Hours
	Total Contact T	ime: 45 Hours

3.	Books Recommended
1	R. P. Chhabra, J. F. Richardson, "Non-Newtonian Flow and Applied Rheology: Engineering
	Applications", 2 nd Edition, Butterworth Heinemann, Oxford, 2008.
2	R. Pal, "Rheology of Particulate Dispersions and Composites", CRC Press, New York, 2007.
3	R. G. Larson, "The Structure and Rheology of Complex Fluids", Oxford University Press, New York,
	1999.
4	R.G. Owens, T. N. Phillips, "Computational Rheology", Imperial College Press, London, 2002.
5	A. Y. Malkin, A. I. Isayev, "Rheology: Concepts, Methods and Applications", ChemTec Publishing,
	Canada, 2005.

M. Tech. I (Chemical Engineering) – Semester - II	Scheme	L	Т	Р	Credit
INDUSTRIAL BIOTECHNOLOGY		3	0	0	03
(CHCH114)					
Elective					

1.	Course Outcomes (COs):
	At the end of the course the students will be able to:
CO1	Comprehend the principles behind Industrial biotechnology
CO2	Solve problems related to kinetics of enzymes and interpret actions
CO3	Design the concepts related to Bioreactor design
CO4	Describe broad understanding of concepts and applications of microorganism
CO5	Develop mathematical models in biotechnology
CO6	Impart the knowledge to apply in sustainable biotechnology, environmental biotechnology and nano -
	biotechnology

2.	Syllabus	
	INTRODUCTION	3 Hours
	Key factor for development of Biotechnology processes. Classification and No	omenclature of
	Microorganism, Staining Method, Method of Determination of cell no and mass, genetica	ally engineering
	Cell	
	ENZYMES	8 Hours
	Enzyme kinetics introduction, Mechanistic models for simple enzyme kinetics, models for	more complex
	enzyme kinetics, Models for pH and temperature effect on enzymes and deactiv	ation kinetics.
	Immobilized enzyme systems, applied enzyme catalysis.	
	BIOREACTORS	6 Hours
	Different types of bioreactors and bioreactor design, application of artificial intelligence	e in bioprocess
	control.	
	MICROBIAL GROWTH	8 Hours
	Microbial growth, substrate degradation and product formation kinetics, stoichiometric mi	icrobial growth
	and product formation	
	SUSTAINABLE BIOTECHNOLOGY	6 Hours
	Plants as source of chemicals, Microbial production of chemicals, Microbial polymers, Microbial	crobial plastics,
	Industrial processes and clean technology	
	NANOBIOTECHNOLOGY	4 Hours
	Biosensor, Biomaterials, nano-medicine.	
	MATHEMATICAL METHODS IN BIOTECHNOLOGY	6 Hours
	Classification of mathematical models applicable in biotechnology with applications exam	ples. Statistical
	analysis, Testing mathematical models.	
	ENVIRONMENTAL BIOTECHNOLOGY	4 Hours
	Bioremediation, Biofuels, Biofouling, Natural resource recovery.	
	Total Contact T	ime: 45 Hours

3.	Books Recommended
1	L. M. Shuler, F. Kargi, "Bioprocess Engineering: Basic Concepts: International edition", 3rd Edition,
	Prentice Hall International Series, 2017.
2	J. E. Bailey, D. F. Ollis, "Biochemical Engineering Fundamentals", 2 nd Edition, McGraw-Hill, 1986.
3	D. Das, S. Pandit, "Industrial Biotechnology", 1st Edition, CRC Press, Boca Raton, FL, USA, 2021.
4	B. K. Dutta, "Mathematical Methods in Chemical and Biological Engineering", 1st Edition., CRC Press,
	Boca Raton, FL, USA, 2017.
5	A. Scragg, "Environmental Biotechnology", 2 nd Edition., Oxford University Press, 2005.

M. Tech. I (Chemical Engineering) – Semester - II	Scheme	L	Т	Р	Credit
ENVIRONMENT, HEALTH AND SAFETY		3	0	0	03
(CHCH116)					
Elective					

1.	Course Outcomes (COs):
	At the end of the course the students will be able to:
CO1	Describe the environmental ecosystem and its significance.
CO2	Analyze the effects of pollutants on the environment and health.
CO3	Estimate and decide the treatment technologies for waste effluents.
CO4	Justify the significance of safety for industries and available laws.
CO5	Estimate the hygiene and occupational health in industrial environment.
CO6	Design and illustrate the treatment methodologies for resource generation.

2.	Syllabus				
	INTRODUCTION	5 Hours			
	Importance of Environment, its components, ecology, biosphere, interaction, impact of	development,			
	pollution and its effects, reversibility of environment. Safety, Health and safe practices in	n industries and			
	its importance, sources of pollution from Chemical Industries, public awareness, and sustai	nability			
	IMPACT ON BIOLOGICAL ENVIRONMENT	10 Hours			
	Discharge of various effluents (water, air, and solid) and their impacts on environmental and human				
	health, characterization, identification, different treatment processes (chemical, biological, and advanced),				
	mix first and separate later (MFSL) approach and its disadvantages, decentralization, tertiary treatment,				
	and disinfection.				
	SOLID WASTE TREATMENT AND DISPOSAL	8 Hours			
	Definition, Types of solid waste, generation, onsite handling, storage & processing, Dif	fferent types of			
	disposal techniques, recovery of resources, reuse of solid waste, electronic waste, polici	es, and current			
	practices.				
	SAFETY PRACTICES IN INDUSTRIES	5 Hours			
	Safety, loss prevention, safe practice, codes of safety, and integrity for various types of processes, safety				
	and morals, accidents, accident reporting and investigation, personal protective equipments', releases				
	mitigation procedures, financial aspects of safety, case histories, release of toxic effluents				
	INDUSTRIAL HYGIENE AND OCCUPATIONAL HEALTH	6 Hours			
	Industrial hygiene, health and environmental effects, safety and health training, stress safety, radiations				
	and industrial hazards, industrial noise, vibration, electric hazards, Disposal of scrap a	and other trade			
	wastes, spillage prevention, housekeeping and its advantages, First aid, causalities and inju	ries.			
	LEGISLATIVE MEASURES	5 Hours			
	Different laws related to liquid, solid, and gases effluents, Different standards and legisla	tions, Factories			
	Act, Workman's Compensation Act, Air Water Pollution Act, Bureau of Indian Standard	s on safety and			
	health, OSHA, etc.				
	RESOURCE GENERATION	6 Hours			
	Minimizing waste generation, reduce, reuse and recycling of by-products, Waste utiliz	ation, waste to			
	energy concept, Sustainability, various advanced techniques like UASB, MFC, OMFC etc				
	Total Contact T	ime: 45 Hours			

3.	Books Recommended
1	G. M. Masters, "Introduction to Environmental Engineering and Science", 3rd Edition, Prentice-Hall, New
	Delhi, 2008.
2	S. MaCarty, "Chemistry for Environmental Engineering", 5th Edition, Tata-McGraw-Hill, New Delhi.
3	Metcalf & Eddy, "Waste Water Engineering: Treatment, Disposal and Reuse", 4th Edition, Tata-McGraw-
	Hill, New Delhi, 2002.
4	D.A. Crowl, J. F. Louvar, "Chemical Process Safety", 2 nd Edition, Prantice-Hall, New York, 2002.
5	A. K. Mungray, A. A. Mungray, S. S. Sonawane, S. H. Sonawane, "Novel Approaches Towards
	Wastewater Treatment and Resource Recovery Technologies", 1st Edition, Elsevier Publication 2022.

4.	Additional Reading
1	F. P. Lees, "Loss Prevention in Process Industries", Butterworths, NewDelhi, 4th Edition., 2012.
2	C. S. Rao, "Environmental Engineering", Wiley Eastern Limited, New Delhi, 1995.
3	R. L. Droste, "Theory and Practice of Water and Wastewater Treatment", Wiley India, 1996.
4	C. P. L. Grady, G. Daigger, H. C. Lim, "Biological Waste Water Treatment", 2nd Edition, Marcel
	Dekker, 1999.
5	Research Papers.

M. Tech. I (Chemical Engineering) – Semester - II	Scheme	L	Т	Р	Credit
COMPUTATIONAL FLUID DYNAMICS		3	0	0	03
(CHCH118)					
Elective					

1.	Course Outcomes (COs):
	At the end of the course the students will be able to:
CO1	Understanding the fundamentals of computational methods in fluid flow operations
CO2	Analysing the initial and boundary value problems
CO3	Integrating the appropriate solution methodology and estimating the accuracy of the results for a given
	flow case
CO4	Solving CFD problems using appropriate boundary conditions
CO5	Adapting to various CFD software for solving interdisciplinary problems
CO6	Illustrating the computational results for the given case

2.	Syllabus				
	INTRODUCTION AND GOVERNING EQUATIONS	5 Hours			
	Introduction, Classification of partial differential equations, Navier-Stokes system of equat	tions, Boundary			
	conditions.				
	FINITE DIFFERENCE METHODS	5 Hours			
	Basic aspects of finite difference equations, Derivation of finite difference equations, Accuracy of finite difference solutions				
	SOLUTION METHODS OF FINITE DIFFERENCE EQUATIONS	7 Hours			
	Methods for Elliptic, Parabolic and Hyperbolic equations, Implicit and explicit schemes, stability analysis, Example problems	Von Neumann			
	INCOMPRESSIBLE VISCOUS FLOWS	7 Hours			
	General, Artificial compressibility method, Pressure correction methods, Vortex methods.				
	COMPRESSIBLE FLOWS	6 Hours			
	Potential equation, Euler equations, Navier-Stokes system of equations, Preconditioning process				
	compressible and incompressible flows.				
	INTRODUCTION TO FINITE VOLUME METHOD	5 Hours			
	Integral approach, discretisation & higher order schemes.				
	INTRODUCTION TO FINITE ELEMENT METHOD	4 Hours			
	Finite element formulations, definition of errors, Finite element interpolation functions.				
	APPLICATIONS	6 Hours			
	Chemically reactive flows, Heat transfer and Multiphase flow.				
	Total Contact Time: 45 Hou				

Total Contact Time: 45 Hours

3.	Books Recommended
1	J. D. Anderson, "Computational Fluid Dynamics", McGraw-Hill International Editions, 1st Edition, 1995.
2	S. V. Patankar, "Numerical Heat Transfer and Flow", Taylor & Francis, Reprinted 1st Edition, 2004.
3	J. H. Ferziger, M. Peric, "Computational Methods in Fluid Dynamics", Springer, 1st Edition, 2003.
4	K. Muralidhar, T. Sunderrarajan, "Computational Fluid Flow and Heat Transfer", Alpha Science
	International, 2 nd Edition, 2003.
5	T. J. Chung, "Computational Fluid Dynamics", Cambridge University Press, 2 nd Edition, 2014.

M. Tech. I (Chemical Engineering) – Semester - II	Scheme	L	Т	Р	Credit
DESIGN OF EXPERIMENTS		3	0	0	03
(CHCH120)					
Elective					

1.	Course Outcomes (COs):
	At the end of the course the students will be able to:
CO1	Explain the importance of statistical approach in research and experimental planning.
CO2	Select suitable data set for analysis of the results.
CO3	Devise effective ways to conduct experiments and obtain optimum conditions.
CO4	Perform analysis of variance for analysing effect of various factors studied.
CO5	Apply various methods of factorial designs (2 ^K method, Response surface method, Taguchi method) for a
	given set of parameters.
CO6	Able to use software for analysis of the experimental results.

2.	Syllabus			
	REVIEW OF BASIC STATISTICAL CONCEPTS	8 Hours		
	Measures of central tendency, sampling distribution, hypothesis testing, p-value, Type	e-I and Type-II		
	error, confidence interval, central limit theorem			
	FUNDAMENTALS OF EXPERIMENTAL DESIGN	10 Hours		
	Experimentation, basic principles of design, steps in experimentation, linear regression, multiple and			
	partial correlation coefficients			
	INTRODUCTION TO THE ANALYSIS OF VARIANCE (ANOVA)	8 Hours		
	Understanding variation, No-way ANOVA, One-way ANOVA, Two-way ANOVA, Three	-way ANOVA		
	2 ^k FACTORIAL EXPERIMENTS AND DESIGNS	6 Hours		
	2 ² Factorial design, 2 ³ Factorial design, 2 ^k Factorial design, Blocking and confounding			
	SINGLE, MULTI-FACTORIAL EXPERIMENTS	5 Hours		
	Completely randomized design, Block Design, Latin and Graeco-latin square design, Degree of freedom			
	and sum of squares, Use of Excel and relevant software			
	RESPONSE SURFACE METHODS	4 Hours		
	Response surface designs (Central composite design; Box-behnken design), Use of Exc	el and relevant		
	software			
	TAGUCHI METHOD	4 Hours		
	Nominal-the better case, Smaller-the better case, Larger-the better case, Estimation of	of quality loss,		
	Introduction to orthogonal designs, Robust design; Data analysis, Multi-response optim	ization, Use of		
	Excel and relevant software			
1	Total Contact T	ime: 45 Hours		

3.	Books Recommended
1	P. J. Ross, "Taguchi Techniques for Quality Engineering", McGraw-Hill Book Co, New York, U.S.A.,
	1989.
2	K. Krishnaiah, P. Shahabudeen, "Applied Design of Experiments and Taguchi Methods", PHI Learning,
	India, 2012.
3	G. Taguchi, S. Chowdhury, Y. Wu, "Taguchi's Quality Engineering Handbook", John Wiley and Sons,
	New York, U.S.A., 2005.
4	D. C. Montgomery, "Design and Analysis of Experiments", 5th Edition, John Wiley and Sons, New York,
	U.S.A., 2001.
5	Z. R. Lazic, "Design of Experiments in Chemical Engineering", Wiley-VCH Verlag GmbH & Co.,
	Germany, 2004.

M. Tech. I (Chemical Engineering) – Semester - II	Scheme	L	Т	Р	Credit
ADVANCED PROCESS CONTROL		3	0	0	03
(CHCH122)					
Elective					

1.	Course Outcomes (COs):
	At the end of the course the students will be able to:
CO1	Explain the concept of advanced control schemes used in process control
CO2	Develop control relevant linear perturbation models
CO3	Explain the concept of digital control system
CO4	Elaborate the use of soft computing techniques in process control
CO5	Analyze interaction in multi loop control
CO6	Analyze stability of digital control system

2.	Syllabus	
	INTRODUCTION AND MOTIVATION	4 Hours
	Introduction, Application; Plant wide control	
	DIGITAL SAMPLING, FILTERING AND CONTROL	6 Hours
	Sampling and signal reconstruction, Signal processing and data filtering	
	DEVELOPMENT OF CONTROL RELEVANT LINEAR PERTURBATION	7 Hours
	MODELS	
	Development of Control Relevant Linear Perturbation Models; Linearization o	f Mechanistic
	Models; Introduction to z-transforms and Development of Grey-box models	
	DEVELOPMENT OF LINEAR BLACK-BOX DYNAMIC MODELS	10 Hours
	Introduction to Stochastic Processes; Development of ARX models; Statistical	Properties of
	ARX models and Development of ARMAX models; Issues in Model Develop	oment; Model
	Structure Selection and Issues in Model Development; Issues in Model Developm	nent and State
	Realizations of Transfer Function Models	
	STABILITY ANALYSIS, INTERACTION ANALYSIS AND MULTI-	6 Hours
	LOOP CONTROL	
	Stability Analysis of Discrete Time Systems; Lyapunov Functions; Jury's Stability	Test.
	MULTILOOP AND MULTIVARIABLE CONTROL	6 Hours
	Interaction Analysis and Multi-loop Control; Pairing of controlled and Manipula	ted Variables;
	RGA and Singular Value Analysis; Decoupling and Multivariable Control Stratigie	es
	STATE ESTIMATION AND KALMAN FILTERING	6 Hours
	Soft Sensing and State Estimation, Development of Luenberger Observer; Ir	ntroduction to
	Kalman Filtering	
	Total Contact T	ime: 45 Hours

3.	Books Recommended
1	K. J. Astrom, B. Wittenmark, "Computer Controlled Systems", Prentice Hall India, 3 rd Edition, 1997.
2	G. F. Franklin, J. D. Powell, M. L. Workman, "Digital Control Systems", Addison Wesley, 3rd Edition,
	1997.
3	D. E. Seborg, T. F. Edgar, D. A. Mellichamp, "Process Dynamics and Control", Wiley, 3 rd Edition, 2010.
4	G. C. Goodwin, S.F. Graebe, M. E. Salgado, "Control System Design", Prentice Hall, 1st Edition, 2000.
5	G. Stephanopoulos, "Chemical Process Control: An Introduction to Theory and Practice", 1st Edition,
	Prentice Hall India, 2008.

M. Tech. I (Chemical Engineering) – Semester - II	Scheme	L	Т	Р	Credit
CATALYST SCIENCE AND TECHNOLOGY		3	0	0	03
(CHCH124)					
Elective					

1.	Course Outcomes (COs):
	At the end of the course the students will be able to:
CO1	Describe concepts and significance related to heterogeneous and homogeneous catalysts
CO2	Explain steps and methods in catalyst preparation
CO3	Describe and apply selected catalyst characterization methods (identify analytical tools for specific
	catalytic applications)
CO4	Explain why and how catalysts deactivate and how catalyst deactivation can be postponed or prevented
CO5	Outline dis-/advantages of supported and full-catalysts with respect to their application
CO6	Explain industrial catalytic processes

2.	Syllabus	
	INTRODUCTION TO CATALYSIS	2 Hours
	Significance of catalysis, Heterogeneous Catalysis: Examples, Case Histories and Current	Frends.
	SOLID CATALYSIS	6 Hours
	Types of catalysts, Preparation methods of Solid Heterogeneous Catalysts, Catalyst support	ts, Activation.
	CATALYSTS CHARACTERIZATION METHODS	8 Hours
	Adsorption methods, Physicochemical Properties, Spectroscopic Methods.	
	CATALYST PERFORMANCE	4 Hours
	Testing of catalysts, activity and selectivity studies.	
	EFFECT OF TRANSPORT PROCESSES	4 Hours
	External transport processes, internal transport processes for reaction and diffusion in poror	us catalysts
	MECHANISM OF CATALYTIC REACTIONS	4 Hours
	Rates of adsorption, desorption, surface reactions, rate determining steps.	
	KINETIC MODELLING AND PARAMETER ESTIMATIONS	4 Hours
	Kinetic study and parametric evaluation.	
	CATALYSTS DEACTIVATION	2 Hours
	Promoters, inhibitors, catalyst deactivations, kinetics of catalyst deactivations.	
	INDUSTRIAL CATALYSIS APPLICATION	6 Hours
	Green Chemistry, Biomass to biofuels and chemicals, CO ₂ utilization etc.	
	NEW DEVELOPMENT IN SOLID CATALYSIS	2 Hours
	Monolith catalysts, Nanocatalysts, etc.	
	INTRODUCTION TO HOMOGENEOUS CATALYSIS	3 Hours
	Total Contact T	ime: 45 Hours

3.	Books Recommended
1	J. M. Thomas, W. J. Thomas, "Principles and Practice of Heterogeneous Catalysis", Wiley- VCH., 2015.
2	C. H. Bartholomew, R. J. Farrauto "Fundamentals of Industrial catalytic Processes", Wiley- VCH., 2010.
3	Julian Ross, "Heterogeneous Catalysis - Fundamentals and Applications", Elsevier, 2012.
4	S. Lowell, Joan E. Shields, Martin A. Thomas, Matthias Thommes, "Characterization of Porous Solids
	and Powders: Surface Area, Pore Size and Density", Springer Science, New York, 2004.
5	Fogler H.S., "Elements of Chemical Reaction Engineering", 4th Edition, Prentice Hall, NJ, 2006.

4.	Additional Reading
1	Articles from Peer Reviewed Journals.

M. Tech. I (Chemical Engineering) – Semester - II	Scheme	L	Т	Р	Credit
SUSTAINABLE DEVELOPMENT GOALS		3	0	0	03
(CHCH126)					
Elective					

1.	Course Outcomes (COs):
	At the end of the course the students will be able to:
CO1	Understand critically emergence and development of the Sustainable Development Goals (SDGs)
CO2	Identify and apply different methods for assessing clean water
CO3	Evaluate sustainabable solutions for SDGs using different approach and calculation
CO4	Describe various potentials ways to get affordable and clean energy
CO5	Explain current challenges i.e., social, environmental and econmic in achieving the SDGs
CO6	Examine how the different SDGs are implemented and interrelated

2.	Syllabus	
	THE ORIGIN, DEVELOPMENT AND IDEA OF THE SDGs	11 Hours
	History and origins of the Sustainable Development Goals. What are the SDGs? What methodology and perspectives? How are they related to the Millennium Development Goal	are their aims, ls?
	CLEAN WATER	13 Hours
	Overview of conventional wastewater treatment plant, Biological treatment: Principle treatment, kinetics of biological growth, aerobic (ASP) and anaerobic treatment (UAS Activated sludge, Trickling filters, biological disc, packed bed and fluidized bed treatme ponds, Advanced waste water treatment: Principles of tertiary treatment (membrane based MF, UF, NF and RO), reuse and resource recovery, and recent developments i.e., forward membrane bio reactor (MBR), Pressure retarded osmosis (PRO) and Pressure assister Seawater Desalination	s of biological SB) of sewage. nt, stabilization d treatment i.e., l osmosis (FO), d FO (PAFO),
	SANITATION	10 Hours
	Concept of environment and scope of sanitation in rural areas. Magnitude of problem of w sanitation. National policy. On site sanitation system i.e., septic tanks, soakage pits etc., Co filling, Biogas plants.	ater supply and omposting, land
	AFFORDABLE CLEAN ENERGY	11 Hours
	Examples of future Clean Technology, Biodiesel, Natural Compost, Eco-Friendly Pla Energy, Hydrogen, Bio-fuels. Solar Energy, Wind, Hydroelectric Power, Biotran biomass/organic waste into value added chemicals energy, Bio-fertilizers, Microbial fu Osmotic microbial fuel cell (OMFC), Benthic microbial fuel cell (BMFC), Hybrid OMFC	astic, Alternate nsformation of nel cell (MFC), etc.
	Total Contact T	ime: 45 Hours

3.	Books Recommended
1	R.W. Baker, "Membrane Technology and Application", John Wiley and Sons Ltd., 2004.
2	Dalby, Simon, "Achieving the Sustainable Development Goals: Global Governance Challenges",
	Routledge, 2019.
3	C.S. Rao, "Environmental Engineering", Wiley Eastern Limited, New Delhi, 1995.
4	APHA, "Standard Methods for Examination of Water and Wastewater"; 21st Edition, 2002.
5	Metcalf and Eddy, "Wastewater Engineering, Treatment", Disposal and Reuse, Inc. 3 rd Edition McGraw-
	Hill 1991.

M. Tech. I (Chemical Engineering) – Semester - II	Scheme	L	Т	Р	Credit
CORROSION AND ELECTROCHEMICAL		3	0	0	03
ENGINEERING					
(CHCH172)					
Institute Elective					

1.	Course Outcomes (COs):
	At the end of the course the students will be able to:
CO1	Apply laws of electrochemistry to understand mechanism of corrosion
CO2	Estimate the rate of corrosion.
CO3	Differentiate between different types of corrosion.
CO4	Identify the factors causing corrosion and solve problems involving various types of corrosion.
CO5	Assessment of damage caused by corrosion.
CO6	Select suitable technique for corrosion prevention.

2.	Syllabus	
	ELECTROCHEMISTRY OF CORROSION	6 Hours
	Corrosion - introduction and definitions; Electrochemical cells - definitions and princ	iples; Potential
	measurements - galvanic cells, concentration cells; EMF and Galvanic series - bimetallic c	couples; Eh-pH
	diagrams - fundamental aspects; Construction of Eh - pH diagrams; FeH2O-O2 dia	agram; Copper,
	aluminum and general corrosion diagrams	
	CORROSION KINETICS AND APPLICATION OF ELECTROCHEMISTRY	11 Hours
	Over potential; Activation Polarization; Concentration Polarization; Ohmic Drop; Graphic	cal Presentation
	of Kinetic Data (Evans Diagrams); Activation Controlled Processes; Concentration Contro	olled Processes;
	Examples of Applied Electrochemistry to Corrosion; Electrochemical Polarization Cor	rosion Testing;
	Corrosion Monitoring; Cathodic Protection; Anodic Protection; Aluminum Anodi	zing; Chloride
	Extraction.	
	FORMS OF CORROSION	7 Hours
	Recognizing Corrosion; Localized Corrosion (Pitting Corrosion, Crevice Corrosion, Galv	anic Corrosion,
	Intergranular Corrosion, Dealloying, Hydrogen-Induced Cracking, Hydrogen Blistering,	etc.); Velocity
	Induced Corrosion (Erosion-Corrosion, Cavitation, etc.); Mechanically Assisted Co	rrosion (Stress
	Corrosion Cracking, Corrosion Fatigue, Fretting Corrosion, etc.).	
	FACTORS AFFECTING CORROSION AND ITS MONITORING	9 Hours
	Effect of ambient conditions; Corrosion by fresh water and other types of water;	Corrosion by
	atmosphere; corrosion in soil; Microbiologically affected corrosion; Corrosion in concre	te; corrosion in
	petroleum industries; Corrosion Test Methods and Testing Procedure; Electrochemical Tes	sting; Corrosion
	Monitoring and Inspection; Monitoring of Cathodic Protection; Inspection and Monitor	ring of Process
	Plants; Monitoring and Testing in Other Environments	12 Hound
	RISK ASSESSMENT OF CORROSION AND ITS MITIGATION	12 Hours
	Risk assessment and analysis; Risk assessment methods; Cost of corrosion; Hazard a	und operability;
	ranure modes – effects and criticality analysis; Risk matrix methods; rault free analysis; and demoge assessment. Cothe	vsis; Event tree
	Sacrificial cathodic protection: Impressed current cathodic protection: Protective coati	ngs types of
	coatings: coatings failure: Economic aspects of coating selection and maintenance: Or	rganic coatings.
	Inorganic (non-metallic) coatings: Metallic coatings: Coating inspection and testing: Surface	ce preparation
	Total Cantact T	Simo, 45 Horas
	I otal Contact 1	me: 45 nours

3.	Books Recommended
1	P. R. Roberge, "Corrosion engineering: principles and practice", 1 st Edition, New York: McGraw-Hill,
	2008.
2	R. G. Kelly, J. R. Scully, D. Shoesmith, R. G. Buchheit, "Electrochemical techniques in corrosion
	science and engineering", 1 st Edition, CRC Press, 2002.
3	E. Bardal, "Corrosion and protection", 1st Edition, Springer Science & Business Media, 2004.
4	D. Landolt, "Corrosion and surface chemistry of metals", 1st Edition, EPFL press, 2007.
5	Z. Ahmad, "Principles of corrosion engineering and corrosion control", 1 st Edition, Elsevier Science and
	Technology Books, 2006.

M. Tech. I (Chemical Engineering) – Semester - II	Scheme	L	Т	Р	Credit
NON-CONVENTIONAL ENERGY		3	0	0	03
(CHCH174)					
Institute Elective					

1.	Course Outcomes (COs):
	At the end of the course the students will be able to:
CO1	Identify energy demand and relate with available energy resources
CO2	Understand the basics of various nonconventional energy systems
CO3	Demonstrate the generation of electricity/energy from various Non-Conventional sources, have a
	working knowledge on types of fuel cells
CO4	Analyze harnessing of various nonconventional techniques like solar, biomass, wind, hydrogen, Ocean,
	fuel cells, etc.
CO5	Evaluate the hydrogen and other various fuel cell for the conversion of chemical energy to electrical
	energy
CO6	Design and illustrate the nonconventional energy conversion systems for real applications

2.	Syllabus	
	INTRODUCTION	2 Hours
	Overview of World Energy and India's Energy Scenario, Scale of quantities, Impact of	current energy
	usage, Conventional sources of energy, Overview of non-conventional energy resources,	, environmental
	aspects of energy utilization, conventional and non-conventional sources of energy	v, merits and
	challenges, Introduction to various renewable energy sources.	
	SOLAR ENERGY	8 Hours
	Solar energy incident on earth, solar spectrum, overview of solar energy technologies, p durability of solar devices. Solar thermal energy conversion: Solar radiation on the measurement of solar radiations, concentrating and non-concentrating types of solar col solar thermal applications, examples of systems. Solar electrical energy conversion: Co working of solar cells, materials and PV modules, different PV technologies, photo components and different applications, power plants, case studies.	erformance and earth surface, lectors, various onstruction and ovoltaic system
	WIND ENERGY	6 Hours
	Principle of wind energy conversion; Basic components of wind energy conversion syst components, various types and their constructional features; design considerations of vertical axis wind machines: analysis of aerodynamic forces acting on wind mill blades an power output; wind data and site selection considerations.	ems; wind mill horizontal and d estimation of
	BIOMASS ENERGY	11 Hours
	Biomass conversion technologies, Biogas generation plants, Classification, advantages and constructional details, site selection, digester design consideration, filling a digester maintaining biogas production, Fuel properties of bio gas, utilization of biogas. Waste as utilization of Bio-electrochemical systems for conversion of chemical to electrical ene application and potentials.	l disadvantages, er for starting, liquid fuels and rgy, principles,
	OCEAN ENERGY	5 Hours
	Ocean thermal electric conversion, open and closed cycle of OTEC, basic principles of components of tidal power plants, single & double basin arrangements, Energy from ocea energy conversion devices. Tidal Energy-Principle of working, performance and lim Energy-Principle of working, performance and limitations. Ocean Thermal Energy-Ava and working principle, performance and limitations.	tidal power & an waves, wave nitations. Wave ilability, theory
	GEOTHERMAL ENERGY	3 Hours
	Estimation and nature of geothermal energy, geothermal sources and resources like hyd pressured hot dry rock, magma. Advantages, disadvantages and application of geoth prospects of geothermal energy in India.	rothermal, geo- ermal energy,
	HYDROGEN ENERGY	4 Hours
	Hydrogen Production methods, Hydrogen storage, hydrogen transportation, utilization of hydrogen as alternative fuel for vehicles, limitations and future. Principle of working of v fuel cells and their working, performance and limitations.	f hydrogen gas, various types of
	BIOGAS ENERGY	6 Hours
	Principle of bio gas generation, constructional details of various biogas plants, factors affect of biogas and methods of maintaining biogas, Bio Mass: Introduction, methods of obtaining biogas, Bio Mass: Introduction, methods of biogas, Bio Mass: Introduction, methods of biogas, Bio Mass: Introduction, Bio	cting generation ng energy from

biomass, thermal gasification.
Total Contact Time: 45 Hours

3.	Books Recommended
1	G. D. Rai, "Non-Conventional Energy Sources", 4th Edition, Khanna Publishers, 2000.
2	S. P. Sukhatme, "Solar Energy", 3 rd Edition, Tata McGraw-Hill Education Pvt Ltd, 2008.
3	B. H. Khan, "Non-Conventional Energy Resources", 2 nd Edition, Tata McGraw-Hill Education Pvt Ltd,
	2011.
4	S. Hasan, D. K. Sharma, "Non-Conventional Energy Resources", 3 rd Edition, S. K. Kataria & Sons, 2012.
5	G. N. Tiwari, M. K. Ghosal, "Renewable Energy Resource: Basic Principles and Applications", Narosa
	Publishing House, 2004.

4.	Additional Reading
1	J. Twidell, T. Weir, "Renewable Energy Resources", Taylor & Francis; 2 nd Edition, 2005.
2	B. E. Logan, "Microbial Fuel Cells", 1 st Edition, Wiley (2007).

M. Tech. I (Chemical Engineering) – Semester - II	Scheme	L	Т	Р	Credit
ENVIRONMENT MANAGEMENT SYSTEM		3	0	0	03
(CHCH176)					
Institute Elective					

1.	Course Outcomes (COs):
	At the end of the course the students will be able to:
CO1	Describe, develop and interpret methods of the Environmental Management Systems.
CO2	Justify the need for the knowledge of various environmental protection rules, standards, and EIA
	guidelines.
CO3	Apply the applications of environmental management systems on different chemical industries.
CO4	Understand the concept of environmental impact assessment
CO5	Implement the Environmental Auditing in various Industries/Projects
CO6	Prepare the post-project monitoring activities

2.	Syllabus	
	INTRODUCTION TO ENVIRONMENT MANAGEMENT SYSTEM	5 Hours
	Introduction to environment, basic Definitions and terms of environmental manage framework for environmental management system	gement system,
	RESOURCE MANAGEMENT AND SUSTAINABLE DEVELOPMENT	4 Hours
	ENVIRONMENTAL PROTECTION ACTS, RULES AND STANDARDS, EIA GUIDELINES	6 Hours
	The Water (Prevention and Control of Pollution) Act, Air (Prevention and Control of I Environmental Protection Act	Pollution) Act,
	ENVIRONMENT IMPACT ASSESSMENT	6 Hours
	Definition and scope, preliminary screening requiring EIA of projects. Impact identificati of Impact; Impact Evaluation. Types of EIA, rapid and comprehensive, Methods of envir assessment	on, Assessment ronment impact
	ENVIRONMENT MANAGEMENT	6 Hours
	Natural Resources Conservation, Conservation of Energy, Pollution prevention, Dispo effluents, Solid Waste Disposal, Concept of green cities	osal of Treated
	INTRODUCTION TO ENVIRONMENTAL AUDITING	7 Hours
	Introduction to Environmental Auditing, Category "A" & "B" types of projects. I Guidelines to conduct Environmental Audit.	Procedures and
	APPLICATIONS OF ENVIRONMENTAL MANAGEMENT SYSTEM	6 Hours
	Applications EMS in terms of Process flow chart, effluent Generation, composition ar effluents from different chemical industries.	nd treatment of
	POST PROJECT MONITORING	5 Hours
	Total Contact T	Time: 45 Hours

3.	Books Recommended
1	"Environmental Management Systems: An Implementation Guide for Small and Medium-Sized
	Organizations", 2 nd Edition, NSF International, Ann Arbor, Michigan, 2001.
2	M. N. Rao, "Waste Water Treatment", Oxford and IBH publishing Co. Pvt Ltd, 2007.
3	H. S. Peavy, D.R. Rowe, T. George, "Environmental Engineering", New York: McGraw-Hill, 1987.
4	Christopher Sheldon and Mark Yoxon, "Installing Environmental management Systems - a step by step
	guide", Earthscan Publications Ltd, London, 1999.
5	N. K. Uberoi, "Environmental Management", Excel Book, New Delhi, 2004.

4.	Additional Reading
1	Recent literature from Journals on Separations.

M. Tech. I (Chemical Engineering) – Semester - I	Scheme	L	Т	Р	Credit
CHEMICAL ENGINEERING LAB - 1		0	0	04	02
(CHCH107)					

1.	Course Outcomes (COs):
	At the end of the course the students will be able to:
CO1	Understand, explain and select instrumental techniques for analysis
CO2	Analyse and interpret the experimental data based on experiments performed
CO3	Simulate cubic and partial differential equations using computational software
CO4	Adapt simulation software to solve chemical engineering problems
CO5	Solve chemical engineering case studies using computational software

2.	Syllabus
	Introduction to analytical experimental methods and sophisticated instruments. Experiments
	using sonication, microwave radiation, membrane separation, reactors, etc. and analysis using
	GC, HPLC, UV, DLS, TURBISCAN, Contact Angle measuring instruments. Introduction to the
	different simulation softwares and their applications to solve the problems arising in chemical
	engineering systems. Solving different case studies from chemical engineering thermodynamics,
	heat transfer and fluid flow, mass transfer, and chemical reaction engineering using simulation
	softwares.

M. Tech. I (Chemical Engineering) – Semester - II	Scheme	L	Т	Р	Credit
CHEMICAL ENGINEERING LAB - 2		0	0	04	02
(CHCH106)					

1.	Course Outcomes (COs):
	At the end of the course the students will be able to:
CO1	Understand, explain and select instrumental techniques for analysis
CO2	Analyse and interpret the experimental data based on experiments performed
CO3	Simulate cubic and partial differential equations using computational software
CO4	Adapt simulation software to solve chemical engineering problems
CO5	Solve chemical engineering case studies using computational software

2.	Syllabus
	Introduction to analytical experimental methods and sophisticated instruments. Experiments
	using sonication, microwave radiation, membrane separation, reactors, etc. and analysis using
	GC, HPLC, UV, DLS, TURBISCAN, Contact Angle measuring instruments. Introduction to the
	different simulation softwares and their applications to solve the problems arising in chemical
	engineering systems. Solving different case studies from chemical engineering thermodynamics,
	heat transfer and fluid flow, mass transfer, and chemical reaction engineering using simulation
	softwares.